NMR studies identify four intermediate states of ATPase and the ion transport cycle of sarcoplasmic reticulum Ca2+-ATPase.
نویسندگان
چکیده
Water proton nuclear relaxation measurements are used to detect and characterize four distinct intermediate states for Gd3+ bound to Ca2+ sites of sarcoplasmic reticulum Ca2+-ATPase in complexes with ATP analogues. In the absence of nucleotides, Gd3+ binds to two occluded Ca2+ transport sites on Ca2+-ATPase which have a low accessibility to solvent water. In the presence of the nonhydrolyzable ATP analogue, Co(NH3)4AMPPCP, a new state for bound Gd3+ (still occluded and with fewer waters of hydration) is observed. In the presence of Co(NH3)4ATP or ATP, two additional states for bound Gd3+ are detected in the NMR studies. The first of these probably represents an intermediate state for bound Gd3+ during ATP hydrolysis. The latter is the most occluded Gd3+ site yet observed in these studies and is probably analogous to the highly occluded E1-P state observed with CrATP [(1987) Biochim. Biophys. Acta 898, 313-322].
منابع مشابه
Activation of calcium transport in skeletal muscle sarcoplasmic reticulum by monovalent cations.
The rates of calcium transport and Ca2+-dependent ATP hydrolysis by rabbit skeletal muscle sarcoplasmic reticulum were stimulated by monovalent cations. The rate of decomposition of phosphoprotein intermediate of the Ca2+-dependent ATPase of sarcoplasmic reticulum was also increased by these ions to an extent that is sufficient to account for the stimulation of calcium transport and Ca2+-depend...
متن کاملCompetition between decavanadate and fluorescein isothiocyanate on the Ca2+-ATPase of sarcoplasmic reticulum.
The binding of vanadate and fluorescein isothiocyanate to the Ca2+-transport ATPase of sarcoplasmic reticulum (EC 3.6.1.3) was analyzed. Monovanadate binds to the Ca2+-transport ATPase at a single high affinity site (site 1), that is presumably related to the binding site for inorganic orthophosphate, and to one of the two sites for decavanadate. Binding of vanadate to this site stabilizes the ...
متن کاملThe dimeric form of Ca2+-ATPase is involved in Ca2+ transport in the sarcoplasmic reticulum.
To identify the functional unit of Ca(2+)-ATPase in the sarcoplasmic reticulum, we assessed Ca(2+)-transport activities occurring on sarcoplasmic reticulum membranes with different combinations of active and inactive Ca(2+)-ATPase molecules. We prepared heterodimers, consisting of a native Ca(2+)-ATPase molecule and a Ca(2+)-ATPase molecule inactivated by FITC labelling, by fusing vesicles load...
متن کاملPoges 387-394 ACYLPHOSPHATASE STIMULATES Ca 2+ TRANSPORT AND Ca2+-DEPENDENT ATPase ACTIVITY IN CARDIAC SARCOPLASMIC RETICULUM
Acylphosphatase purified from heart muscle actively hydrolyzes the phosphoenzyme intermediate of cardiac sarcoplasmic reticulum Ca2+-ATPase. This effect was evident with acylphosphatase concentrations (up to 100 units/mg sarcoplasmic reticulum .protein) that fall within the physiological range, and the low value of the apparent Kin, on the order of 10t M, suggests a high affinity towards this s...
متن کاملThe Effect of Verapamil Administred before the Reperfusion Insult in Isolated Preconditioned Rat Heart on the Microsomal ATPase and Mitochondrial Enzyme Activities
Background: Calcium overload and free radical mediated damage in the mitochondria is the most important pathological changes associated with myocardial ischemic-reperfusion injury. The verapamil post-treatment has been previously reported to prevent reperfusion-induced myocardial injury but functional recovery may be delayed due to the drug's inherent direct myocardial depression effect. In the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FEBS letters
دوره 237 1-2 شماره
صفحات -
تاریخ انتشار 1988